An Explicit Algebraic Family of Genus-one Curves Violating the Hasse Principle

نویسنده

  • BJORN POONEN
چکیده

One says that a variety X over Q violates the Hasse prin iple if X(Q v ) 6= ; for all ompletions Q v of Q (i.e., R and Q p for all primes p) but X(Q) = ;. Hasse proved that degree 2 hypersurfa es in P n satisfy the Hasse prin iple. In parti ular, if X is a genus 0 urve, then X satis es the Hasse prin iple, sin e the anti anoni al embedding of X is a oni in P 2 . Around 1940, Lind [Lin℄ and (independently, but shortly later) Rei hardt [Re℄ dis overed examples of genus 1 urves over Q that violate the Hasse prin iple, su h as the nonsingular

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Curves over Global Fields Violating the Hasse Principle

We exhibit for each global field k an algebraic curve over k which violates the Hasse Principle. We can find such examples among Atkin-Lehner twists of certain elliptic modular curves and Drinfeld modular curves. Our main tool is a refinement of the “Twist Anti-Hasse Principle” (TAHP). We then use TAHP to construct further Hasse Principle violations, e.g. among curves over any number field of a...

متن کامل

An “anti-hasse Principle” for Prime Twists

Given an algebraic curve C/Q having points everywhere locally and endowed with a suitable involution, we show that there exists a positive density family of prime quadratic twists of C violating the Hasse principle. The result applies in particular to wN -Atkin-Lehner twists of most modular curves X0(N) and to wp-Atkin-Lehner twists of certain Shimura curves XD+.

متن کامل

Algebraic Families of Nonzero Elements of Shafarevich-tate Groups

Around 1940, Lind [Lin] and (independently, but shortly later) Reichardt [Re] discovered that some genus 1 curves over Q, such as 2y = 1− 17x, violate the Hasse principle; i.e., there exist x, y ∈ R satisfying the equation, and for each prime p there exist x, y ∈ Qp satisfying the equation, but there do not exist x, y ∈ Q satisfying the equation. In fact, even the projective nonsingular model h...

متن کامل

A descent method for explicit computations on curves

‎It is shown that the knowledge of a surjective morphism $Xto Y$ of complex‎ ‎curves can be effectively used‎ ‎to make explicit calculations‎. ‎The method is demonstrated‎ ‎by the calculation of $j(ntau)$ (for some small $n$) in terms of $j(tau)$ for the elliptic curve ‎with period lattice $(1,tau)$‎, ‎the period matrix for the Jacobian of a family of genus-$2$ curves‎ ‎complementing the classi...

متن کامل

The Arithmetic of Prym Varieties In

Given a curve of genus 3 with an unramified double cover, we give an explicit description of the associated Prym variety. We also describe how an unramified double cover of a non-hyperelliptic genus 3 curve can be mapped into the Jacobian of a curve of genus 2 over its field of definition and how this can be used to do Chabautyand Brauer-Manin type calculations for curves of genus 5 with an unr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000